Positive curvature and scalar field tunneling in the landscape
نویسندگان
چکیده
منابع مشابه
Positive Scalar Curvature
One of the striking initial applications of the Seiberg-Witten invariants was to give new obstructions to the existence of Riemannian metrics of positive scalar curvature on 4– manifolds. The vanishing of the Seiberg–Witten invariants of a manifold admitting such a metric may be viewed as a non-linear generalization of the classic conditions [12, 11] derived from the Dirac operator. If a manifo...
متن کاملPositive Scalar Curvature with Symmetry
We show an equivariant bordism principle for constructing metrics of positive scalar curvature that are invariant under a given group action. Furthermore, we develop a new codimension2 surgery technique which removes singular strata from fixed point free S-manifolds while preserving equivariant positive scalar curvature. These results are applied to derive the following generalization of a resu...
متن کاملPositive Scalar Curvature and Minimal Hypersurfaces
We show that the minimal hypersurface method of Schoen and Yau can be used for the “quantitative” study of positive scalar curvature. More precisely, we show that if a manifold admits a metric g with sg ≥ |T | or sg ≥ |W |, where sg is the scalar curvature of of g, T any 2-tensor on M and W the Weyl tensor of g, then any closed orientable stable minimal (totally geodesic in the second case) hyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2019
ISSN: 2470-0010,2470-0029
DOI: 10.1103/physrevd.99.025010